Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this work, we discuss an application of the “inverse problem” method to find the external trapping potential, which has particular N trapped soliton-like solutions of the Gross–Pitaevskii equation (GPE) also known as the cubic nonlinear Schrödinger equation (NLSE). This inverse method assumes particular forms for the trapped soliton wave function, which then determines the (unique) external (confining) potential. The latter renders these assumed waveforms exact solutions of the GPE (NLSE) for both attractive (g<0) and repulsive (g>0) self-interactions. For both signs of g, we discuss the stability with respect to self-similar deformations and translations. For g<0, a critical mass Mc or equivalently the number of particles for instabilities to arise can often be found analytically. On the other hand, for the case with g>0 corresponding to repulsive self-interactions which is often discussed in the atomic physics realm of Bose–Einstein condensates, the bound solutions are found to be always stable. For g<0, we also determine the critical mass numerically by using linear stability or Bogoliubov–de Gennes analysis, and compare these results with our analytic estimates. Various analytic forms for the trapped N-soliton solutions in one, two, and three spatial dimensions are discussed, including sums of Gaussians or higher-order eigenfunctions of the harmonic oscillator Hamiltonian.more » « less
-
Abstract In this work, we consider the nonlinear Schrödinger equation (NLSE) in 2+1 dimensions with arbitrary nonlinearity exponentκin the presence of an external confining potential. Exact solutions to the system are constructed, and their stability as we increase the ‘mass’ (i.e., theL2norm) and the nonlinearity parameterκis explored. We observe both theoretically and numerically that the presence of the confining potential leads to wider domains of stability over the parameter space compared to the unconfined case. Our analysis suggests the existence of a stable regime of solutions for allκas long as their mass is less than a critical valueM*(κ). Furthermore, we find that there are two different critical masses, one corresponding to width perturbations and the other one to translational perturbations. The results of Derrick’s theorem are also obtained by studying the small amplitude regime of a four-parameter collective coordinate (4CC) approximation. A numerical stability analysis of the NLSE shows that the instability curveM*(κ)versus κlies below the two curves found by Derrick’s theorem and the 4CC approximation. In the absence of the external potential,κ= 1 demarcates the separation between the blowup regime and the stable regime. In this 4CC approximation, forκ< 1, when the mass is above the critical mass for the translational instability, quite complicated motions of the collective coordinates are possible. Energy conservation prevents the blowup of the solution as well as confines the center of the solution to a finite spatial domain. We call this regime the ‘frustrated’ blowup regime and give some illustrations. In an appendix, we show how to extend these results to arbitrary initial ground state solution data and arbitrary spatial dimensiond.more » « less
An official website of the United States government
